BRIEF COMMUNICATIONS

TEMPERATURE DISTRIBUTION IN A LIQUID LAYER
ON A HORIZONTAL SOLID SURFACE

R. 8. Kuznetskii UDC 536.12

The temperature distribution is found in an incompressible still liquid of known mass cover-
ing a horizontal solid surface at constant temperature. The exact layer thickness and the
total heat content are determined. A stability condition is derived for the liquid equilibrium.

We consider a liquid layer of known mass on a solid horizontal surface whose temperature, like that
of the external medium at the free surface of the liquid, is constant and also known. For a still liquid, we

have the system of equations
h
i(;h_‘?_t_>=o, Sgi:m (1)
dz dz v
0

At constant thermal conductivity, the liquid temperature is a linear function of the coordinate t = t; + az. Its
parameters and h are to be determined.

Analogous problems have been discussed for a liquid layer covering a gravitating sphere [1] and on
the inside of a rotating cylinder [2].

If the o are assumed constant, the boundary conditions on the temperature yield
a:y(tl—-te‘), t1+ﬂx=6. (2)

In particular, we have t = tg; when oy = 0, t = tg; when ¢y = 0, and t = te when Atg = 0; we assume below that
these cases are excluded. Corresponding to these cases we have

min (4,1, £,2) <<t 8<<max (i, f,s), sgna =sgnAt,.
We restrict the discussion to an incompressible liguid with a constant coefficient of thermal expansion:
v="y,exp(01), uv,=const. (3)

After t; and @ are eliminated with the help of (2), the integral relation in (1) becomes

[1 —exp(—u)lexp(p u)=b(e—u). (4)
When o, = ¢, we have
sh- = 2 (e —u; 2b=yhnexp(tf_1i2f_‘ﬁ). )
At 6 = 0, we easily find the final solution:
B By
=1 ——Aft,, a=—"—-At, h=h (b=pyh). 6
1 81+1+bea1—|—b o (b="Pvh) (6)

To find x, we must in general solve transcendental equation (4), which has a single root in the range
0 < x/Atg < 1. All the unknown quantities are found from x:

h=ta+By, a=Pyy, h==x/pyy). ("
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The assumed equilibrium of the still liquid is stable when a > —gét/c [3]; i.e., it is always stable if
Aty > 0, or it is stable when lal < gdty /c if Atg < 0. Otherwise, convection may occur, generally causing a
temperature distribution different from that obtained.

The total heat content of a liquid column with a base of unit area is

J v 8 expu —1,
when 6 = 0, we have
. At
= fe b/2 e |, 9
f=om ot 6+ 02 ©

Let us consider the case of small 6 (l el « 1) separately. Expanding the exponents in (4) in series
and discarding powers of u (ul < le]y greater than the second, we find the quadratic equation

PB—1/2u*+ (1 —bu—be=0. (10
Its roots are real. The root which vanishes along with Atg is
X = 1+H bs At LAte. (11)
2 (1 b 1+

We find from (7) that

t1=t81+[1+ B”ﬂ( b \)23] B_at,

2 \T+to [ +0b
a:l:l+ g—'ﬁl( b )23:' ﬁY Atg; (12)
2 \1+b 10
— o ex =8 b 1
h hoexp(ée)(l—}— . 1+b8)' (13)

When 6 = 0, Egs. (12) and (13) convert into Eqs. (6).

NOTATION

v,c, A, 0 are the specific volume, heat capacity, thermal conductivity, and coefficient of thermal ex-
pansion, respectively, of the liquid;

o is the heat-exchange coefficient (the contact thermal conductivity [1, 2, 4]);
m, i are the mass and total heat content of a liquid column with a base of unit area;
4 is the coordinate, equal to 0 at the solid surface and h at the free surface of the liquid;
t,a are the absolute temperature and temperature gradient, respectively;
y=a/A;

B=1—8"=ay/ (0 +ay);

hg = mvy;

Ate = tgy — teys

g = 040t ;

x =ty ~t; = ah;

y = Atg —X;

u = 06x;

6= B'tes + Plegs
b = 8vhpexp (66).

Subscripts

e, 1,2 are the external medium, solid surface, and free surface of the liquid, respectively.
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